COLUMBIA COLLEGE
MATHEMATICS 113
Final Examination (3 hours)
August 8, 2005

1. a) (Informal) Definition: \(\lim_{x \to a} f(x) = L \) means that as \(x \) approaches \(a \) but the values of \(f(x) \) approach \(L \). (3)
b) (Informal) Definition: \(\lim_{x \to \infty} f(x) = L \) means \(\) (2)
c) Definition: \(f(x) \) is continuous at \(x = a \) if: 1) \(\) (3)
and 3) \(\)
d) (Formal - “\(\varepsilon, \delta \)”) Definition: \(\lim_{x \to a} f(x) = L \) if \(\) (2)

2. Find the following limits (possible answers: a real number, \(\infty, -\infty \) or “does not exist”) Show work and give explanations. Do not use L'Hopital's rule. (3 marks each)
 a) \(\lim_{x \to 5} \frac{x^3 + x - 130}{x^2 - 25} \)
 b) \(\lim_{x \to 4} \frac{4 - \sqrt{x} + 12}{x - 4} \)
 c) \(\lim_{x \to 4^-} \frac{x - 3}{x^2 + x - 20} \)
 d) \(\lim_{x \to \infty} x - \sqrt{x^2 + 8x} \)
 e) \(\lim_{x \to 0} \frac{\sin 2x}{1 - e^x} \)

3. Suppose that the function \(f \) is defined by two formulas: if \(x \leq 2 \) then \(f(x) = 4x - 1 \) and if \(x > 2 \) then \(f(x) = x^2 + 3 \). Prove that \(f \) is continuous at \(x = 2 \) (Verify that three conditions have been satisfied. Also explain why \(f \) is continuous at all other values of \(x \). (5)

5. Give an “\(\varepsilon, \delta \)” proof that \(\lim_{x \to 4} x^2 + 2x = 24 \) (5)

6. A particle moves in the positive direction along a line so that after \(t \) minutes its distance from the origin is \(s(t) = 4t^2 + 3t + 2 \) feet.
 a) Find the average velocity of the particle over the time interval \([1,3]\). (2)
 b) By calculating a limit, find the (instantaneous) velocity at \(t = 2 \). (2)

7. Using only the definition of the derivative function, find the derivative of \(f(x) = x^2 + \frac{2}{x} \) (5)
8. Find the slope-intercept equation of the line that is tangent to the curve
\[y = \frac{x^2 + \sqrt{x}}{x + \sqrt{x}} \] at the point (1,1). (5)

9. Use the local linear approximation of \(f(x) = \log_2(x) \) at \(x_0 = 2 \) to approximate \(f(2.01) \). Express your answer rounded to six decimal places. (5)

10. Use logarithmic differentiation to find the derivative of
\[y = \frac{(x^2 + 1)^5(x^3 + x)^2}{\sqrt{x^2 + 3x}} \] (5)

11. Use L'Hôpital's rule to find:
 a) \(\lim_{x \to 0} \frac{2x - \sin 2x}{x^3} \)
 b) \(\lim_{x \to \infty} \frac{\ln x}{\csc x} \) (5)

12. a) State the Mean Value Theorem (MVT) (1)
b) Verify that the conditions of the MVT are satisfied by the function
\(f(x) = x^3 + 2x^2 \) on the interval [2,6]. (2)
c) Find the number \(c \) that satisfies the conclusion of the MVT for \(f(x) = x^3 + 2x^2 \) on the interval [2,6]. (3)

13. Accurately draw a function \(f(x) \) that has all the following properties:
 - \(f \) is continuous on \([0,4)\) and \((4,\infty)\)
 - \(f(0) = f(3) = 1 \)
 - On \((0,1)\): \(f'(x) < 0, f''(x) < 0 \)
 - On \((1,2)\): \(f'(x) > 0, f''(x) < 0 \)
 - \(f''(2) = 0 \) and \((2,0)\) is an inflection point
 - \(\lim_{x \to 4^-} f(x) = -\infty, \lim_{x \to 4^+} f(x) = -\infty, \lim_{x \to \infty} = 1 \) (5)

14. A particle is moving along the curve \(y = \frac{x}{x^2 + 1} \). Find all values of \(x \) such that the rate that \(x \) is changing with respect to \(t \) (time) is three times the rate that \(y \) is changing with respect to \(t \). (5)

15. For the relation \(y^3 + 2xy^2 - 3x^2y + x^3 = 1 \), use implicit differentiation to find \(\frac{dy}{dx} \) as a function of \(x \) and \(y \) and then find the slope-intercept equation of the line that is tangent to the graph of the relation at the point \((1,1)\). (5)
16. Accurately draw the graph of \(f(x) = \frac{1}{x} - \frac{1}{x^2} \) showing all features of interest and the analyses using the first and second derivatives. (8)

17. Accurately draw the graph of \(\sqrt[3]{x^2 - 4} \) showing all features of interest and the analyses using the first and second derivatives. (Be careful at the critical points) (8)

18. In the diagram above AB = CD. Find the area of the largest such L-shape. (8)

19. a) Accurately draw the graphs of \(y = e^x \) and \(y = 2 - x \) in the same coordinate grid over the interval [-1,2] to determine a good estimate, \(x_0 \) for the zero of the function

\[
f(x) = e^x + x - 2.
\]

b) Use Newton’s method to calculate this zero rounded to four decimal places. (4)

20. Evaluate the following indefinite integrals: (3 marks each)

\[
a) \int \frac{1}{2\sqrt{1 - x^2}} + \frac{2}{3x} \, dx \quad b) \int \csc(x)(\sin x + \cot x) \, dx
\]

END